

GB SilverTec Aluminium multi-layer composite piping and press fittings

Technical manual

www.oeg.net

Contents

1	SilverTec aluminium multi-layer composite piping	3
1.1	Structure, materials and advantages	3
1.2	Technical data	5
2	SilverTec press fittings	6
2.1	Structure and advantages	6
2.2	Technical data (Zeta values)	6
3	General technical specifications	7
3.1	Linear expansion of different pipe materials	7
3.2	Pipe roughness of different pipe materials	7
3.3	Insulation of pipe systems	7

3.4	Floor construction	8
3.5	Sound insulation according to BIN EnEV	8
3.6	Linear expansion	8
3.7	Fixing distances	9
3.8	Laying instructions	9
3.9	Installation examples	10
3.10	Installation and laying guidelines	11
3.11	Calculation example	12
4	Fitting installation instructions	13

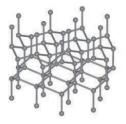
SilverTec aluminium multi-layer composite piping

> Structure, materials and advantages

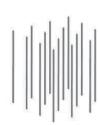
The SilverTec aluminium multi-layer composite pipe has been developed to withstand the large spectrum of temperatures and pressures in cold and hot water systems.

Structure

A basic polyethylene pipe is extruded and a bonding agent is applied.


An aluminium strip is moulded around the pipe, longitudinally butt welded and calibrated onto the inner pipe. Subsequently, another bonding layer and a coating made of polyethylene are applied.

The weld seam is tested inline during the production process. The internal diameter of the finished product is controlled by a ball.


Materials

PE-RT – FLEXIBILITY AT ANY TEMPERATURE. The pipe material PE-RT (raised temperature) has been especially developed for applications in cold and hot water systems. Only the purest material qualities from renowned raw material manufacturers are used. The material with its cross-linked structure has a high thermal resistance and is therefore particularly suitable for the use in this area.

POLYETHYLENE

Physically cross-linked: better structure

Physically not cross-linked: worse structure PE-RT

bonding agent

aluminium pipe

bonding agent

PF-RT

butt welded

High-temperature resistant polyethylene (PE-RT) enhances the typical features of polyethylene. Due to its molecular makeup and its process properties, it remains extremely stable even at high temperatures. Therefore, it is perfectly suited for applications in cold and hot water systems. In comparison to conventional pipe materials like e.g. copper or C-steel, the combination of PE-RT, aluminium and bonding agent provides great advantages in the processing and for the efficiency of installations. All materials have been tested for the use in drinking water installations and are physiologically safe.

Structure, materials and advantages

Advantages of aluminium multi-layer composite piping

The SilverTec pipe system is intended for universal use and provides the processor with some important advantages:

100% diffusion-tight

The SilverTec multi-layer composite pipe is 100% diffusion-tight due to its inside butt welded aluminium pipe (oxygen barrier).

Low thermal expansion

Due to the inside aluminium pipe, thermal expansion is significantly reduced compared to conventional plastic pipes. It is equivalent to that of metal pipes (0.0024 mm/m x K).

Physically cross-linked plastic inside and outside (PE-RT)

The SilverTec multi-layer composite pipe has the same plastic quality inside and outside.

So varying ageing processes or material properties are excluded.

No material abrasion, no deposits

Due to the low degree of roughness of cross-linked plastic, there are no material degradations or deposits that could change the pipe cross-section.

Form stability, hardly any moulded parts necessary for changes in direction

The SilverTec multi-layer composite pipe can be easily bent by hand and remains in the desired shape without spring-back. Changes in direction can be performed without needing any moulded parts. Only in rase cases, special moulded parts may be necessary.

Load capacity of +70 °C at a pressure of 10 bar

The SilverTec multi-layer composite pipe has a load capacity of +70 °C at a pressure of 10 bar. Short-term temperature peaks are possible at +95 °C according to DVGW worksheet W542 and W543.

Sound insulation measures

Due to the smooth inner pipe wall, there is no audible flow noise. Fittings, moulded parts and valves can be decoupled from the buildings's base body by an appropriate insulation (DIN 4109 / EnEV).

Corrosion resistance

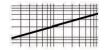
SilverTec fittings and the SilverTec multi-layer composite piping complement each other in their corrosion resistance. Their programme components are suitable for all types of drinking water.

Service life

The SilverTec multi-layer composite pipe is designed for a service life of at least 50 years based on the above-mentioned load capacity (+70 °C at a pressure of 10 bar, short-term +95 °C) and if professionally installed and pressure tested according to DIN 1988.

Complies with the UBA positive list (DVGW and KIWA approval)

kiwa 👹



TECHNICAL DATA ALUMINIUM MULTI-LAYER COMPOSITE PIPING (as of 3/2019)

Dimension (mm)	16x2.0	20x2.0	26x3.0	32x3.0
Approvals / Tests	DVGW KIWA	DVGW KIWA	DVGW KIWA	DVGW KIWA
Colour	white	white	white	white
Pipe structure in layers	5	5	5	5
External pipe diameter (mm)	16.0	20.0	26.0	32.0
Pipe wall thickness (mm)	2.0	2.0	3.0	3.0
Internal pipe diameter (mm)	12.0	16.0	20.0	26.0
Thickness of aluminium layer (mm)	0.20	0.25	0.35	0.50
Smallest bending radius (mm)				
without bending aid (T = +20 °C)	80	100	260	-
Weight per meter (g / m)	105	140	260	350
Water content (I / m)	0.113	0.201	0.314	0.531
Linear expansion coefficient (mm / (m K))	0.023	0.023	0.023	0.023
Thermal resistance (m2 K / W)	0.0045	0.0045	0.0045	0.0045
Thermal conductivity (W / m K)	0.44	0.46	0.45	0.48
Max. operating temperature, over 50 years (°C)	70.0	70.0	70.0	70.0
Max. operating temperature, max. 1 year (°C)	95	95	95	95
Fail-safe temperature, max. 100 hours (°C)	110	110	110	110
Max. operating pressure, over 50 years (bar)	10	10	10	10
Max. operating pressure, max. 1 year (bar)	12	12	12	12
Surface roughness (mm)	0.007	0.007	0.007	0.007
Oxygen permeability (g / m³ d)	<0.1	< 0.1	< 0.1	<0.1

Technical data

5

SilverTec Press fittings

6

Structure and advantages

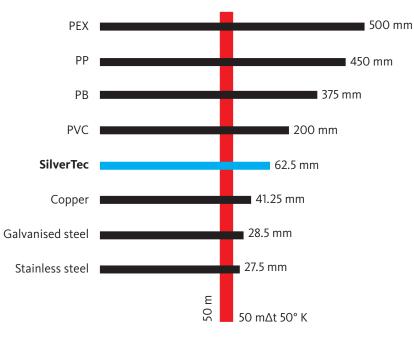
SilverTec press fittings contour TH for multi-layer composite piping

The fittings of the SilverTec TH-series are designed for quick assembly with maximum safety.

Two O-rings and three control windows in the stainless steel sleeves of the fittings ensure a custom-fit insertion depth of the pipe. Thus a permanent and tight joint is created. A stable plastic ring allows for safe pressing even in positions difficult to access. Advantages of SilverTec press fittings contour TH:

- Any unpressed joints can be identified during the pressure test due to the forced leakage of the system.
- The free passage leads to low pressure losses and virtually no water flow noises.
- All materials of the SilverTec press fittings are approved for drinking water applications, comply with the UBA positive list and have a DVGW approval.

2	5
-	-

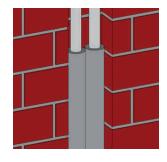

Technical data, zeta values

Loss coefficients $\boldsymbol{\zeta}$

Component	Symbol	DIM 16	DIM 20	DIM 26	DIM 32
T-piece	-1-				
flow separation	T I I I I I I I I I I I I I I I I I I I	9.8	7.6	5.5	3.4
T-piece passage					
Coupling		5.4	4.2	3.1	2.6
T-piece counter flow					
at flow separation		12.2	8.5	6.8	5.1
T-piece counter flow					
at flow merging	.₩	12.2	8.5	6.8	5.1
Elbow 90°		8.7	6.3	4.5	2.9
Pipe bend		1.3	0.9	0.7	0.4
Adapter					
reduction		8.3	6.3	5.1	2.8
Wall plate		5.5	5.4	-	-

SilverTec Technical manual

Linear expansion of different pipe materials at 50 m and Δt 50° K


Pipe wall roughness values of different materials:

Copper		SilverTec	/ Plastic
k new	0.0015 mm	k _{new}	0.007 mm
k used	0.03 mm	k used	0.007 mm
Galvanis	ed steel pipe	Seamless	steel pipes
k _{new}	0.15 – 0.16 mm	k _{new}	0.02 – 0.06 mm
k used	bis 4.0 mm	k used	bis 4.0 mm

In accordance with German energy-saving regulations (EnEV)

Risers in duct or concealed between heated rooms
of different users

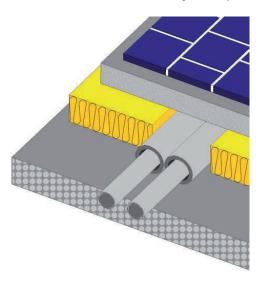
50%

Laying against unheated rooms, ground and outside air

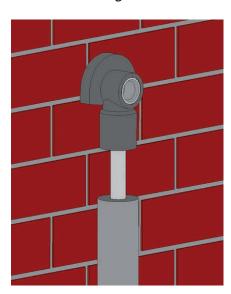
specifications

7

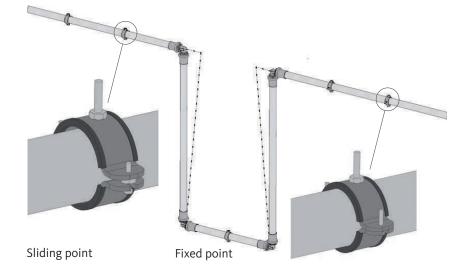
Linear expansion


General technical

Insulation of pipe systems


GB

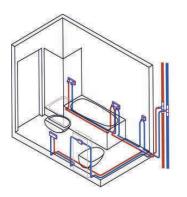
Floor construction


Pre-insulated SilverTec multi-layer composite piping

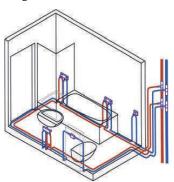
Sound insulation according to DIN EnEV Insulation according to EnEV

6 Linear expansion

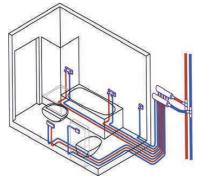
Fixing distances

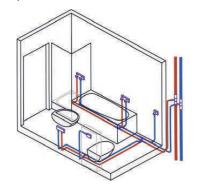

Insulation according to EnEV

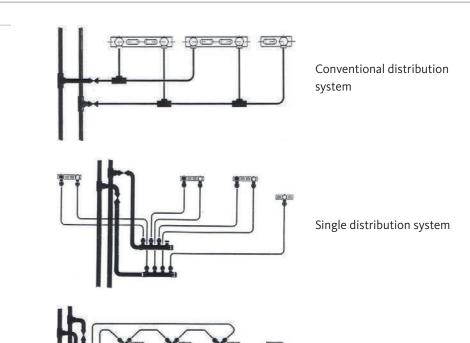
DN	Pipe dimensions	L2 (cm) maximum	
		fixing distance	
	mm	vertical	horizontal
16	16 x 2.00	135	150
20	20 x 2.00	150	175
26	26 x 3.00	165	200
32	32 x 3.00	200	200



Laying information


Group connection

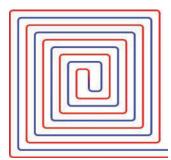

Ring line

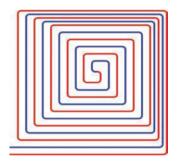

Distribution system

T-piece installation

Ring line system

Underfloor heating


Bifilar laying


Spiral-shaped structure with reversion loop in heating circuit centre. The balanced laying of flow and return results in a very uniform heat distribution.

Bifilar laying with rim zone

Spiral-shaped structure with included rim zone on two sides of the room.

Installation and laying guidelines

Meander-shaped laying with rim zone

In this laying pattern, the rim zone intensi-

fies the temperature increase at the begin-

Meander-shaped laying

Serpentine structure with reversion loop at heating circuit end. The continuous laying without return integration leads to a higher temperature at the beginning of the heating circuit.

<u> </u>	
\square	
\square	

<u></u>	
~	
<u> </u>	

ning of the heating circuit.

Installation

11

12

Calculation example

Two-pipe heating with radiators

Considering maximum flow velocities, the following heat output / volume flows can be connected:

Recommendation:	Radiator-connecting lines	≤ 0.3 m/s
	Heating distribution lines	≤ 0.5 m/s
	Heating risers and cellar pipes	≤ 1.0 m/s

Observe pressure loss $\Delta p!$

Radiator-connecting lines

Pipe dimensions in mm ø	16x2.0
Volume flow Vmax in I/h	130
Flow velocity max. in m/s	0.30
Heat output QN in Kcal/h Δ t +20 °C	2,600
Heat output QN in watts ∆t +20 °C	3,023

Heating distribution lines

Pipe dimensions in mm ø	16x2.0	20x2.0	26x3.0	32x3.0
Volume flow Vmax in I/h	220	450	700	900
Flow velocity max. in m/s	0,50	0.50	0.50	0.50
Heat output QN in Kcal/h ∆t +20 °C	4,400	6,800	14,500	18,000
Heat output QN in watts Δt +20 °C	5,116	7,890	16,800	20,930

Heating risers and cellar pipes

Pipe dimensions in mm ø	16x2.0	20x2.0	26x3.0	32x3.0
Volume flow Vmax in l/h	440	900	1,400	1,800
Flow velocity max. in m/s	1.00	1.00	1.00	1.00
Heat output QN in Kcal/h Δ t +20 °C	8,800	13,600	29,000	36,000
Heat output QN in watts ∆t +20 °C	10,233	15,780	33,600	41,860

Calculation example for volume flow (flow rate in l/h)

 $\frac{\text{Heat output: QN/W x 0.86}}{\text{Temperature difference: } \Delta t (TV-TR)} = \text{Volume flow V in I/h}$

 $\frac{QN = 1,000 \text{ W} \times 0.86}{\Delta t + 20 \text{ °C}} = V = 43 \text{ I/h}$

Note:

With system-bound heating circuits (single-pipe heating), the total ring volume flow of all radiators must be observed!

SilverTec press fittings are ideal to create pipe joints really quickly. The only things you need are aluminium multi-layer composite piping, a pipe cutter, a calibrator and a suitable press machine.

By using a pipe cutter, the aluminium multi-layer composite pipe is cut to length. Subsequent calibrating ensures that the pipe end is absolutely round again and also deburred after the cut. At the same time, the pipe is chamfered on the inside so that the fitting can be inserted into the pipe without damaging the O-ring.

Final certainty of a safe pressing is given by three openings (control windows) at the end of the stainless steel sleeve indicating a perfect seat of the pipe within the fitting.

1. Cutting the pipe to length

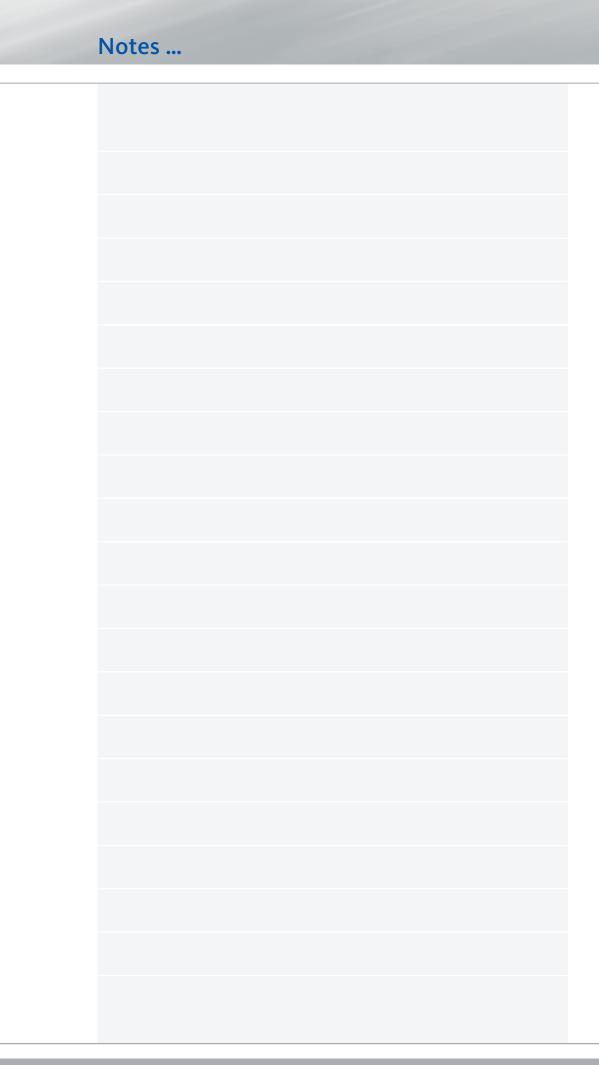
The pipe can be cut to the desired length with a suitable tool. The cross-section area of the cut must be at the right angle to the pipe. Angular cuts are to be avoided. Handsaws and jigsaws or blunt tools are unsuitable for cutting.

2. Calibrating and deburring the pipe

After cutting to length, the pipe must be calibrated and deburred. For this purpose, the calibrator is first inserted into the pipe up to the stop. Then deburring is carried out by turning the calibrator. By turning, material is removed on the pipe interior so that a cone is formed at the pipe making the insertion of the fitting easier and protecting the O-ring from being damaged.

3. Mounting the fitting

Insert the fitting into the pipe end up to the stop by applying adequate pressure and in axial direction. The correct insertion depth can be checked through the three control windows of the stainless steel sleeve. Do not use any additional lubricants.


4. Pressing

By means of a suitable pressing tool and a size-compliant pressing jaw based on the fitting dimension, the pressing process is carried out until the pressing jaw has fully closed and the process is finished. Check the connection afterwards.

Fitting installation

instructions

13

Kostenfreie Bestell- und Service-Hotline: Fon 0800 6 343662 • Fax 0800 6 343292

Free service number: Phone 00 800-63 43 66 24 • Fax 00 800-63 43 29 24

N° gratuits: Tél. 0800 9 19109 • Fax 0800 9 15408

Gratis servicenummers: Tel. 0800 0 226647 • Fax 0800 0 225240

OEG GmbH Industriestraße 1 • D-31840 Hess. Oldendorf info@oeg.net • www.oeg.net