


# Thermostatventil VS

V2000VS

# stufenlos voreinstellbar mit Spülstellung

### **Produkt-Datenblatt**



#### **Ausführung**

Das Thermostatventil besteht aus:

- Ventilgehäuse PN 10, DN 10, 15 oder 20 mit
  - Eingangsseitig Muffengewinde nach DIN 2999 (ISO 7) für Gewinderohr oder Kupfer- bzw. Präzisionsstahlrohr (Klemmringverschraubungen siehe Zubehör)
  - Ausgangsseitig Außengewindeanschluss mit Überwurfmutter und Tülle (Eurokonus) bei DN15
  - Eck- und Durchgangsgehäuse nach DIN mit Einbaumaßen entsprechend EN215, Anhang A, Baureihe D
  - Eck- und Durchgangsgehäuse nach NF mit Einbaumaßen entsprechend EN215, Anhang A, Baureihe F
- Ventileinsatz VS
- Schutzkappe
- Überwurfmutter und Tülle

### Werkstoffe

- Eck- und Durchgangsventil nach NF, Axial- und Durchgangsventil: Gehäuse aus Pressmessing, matt vernickelt
- Eck- und Durchgangsventil nach DIN: Gehäuse aus Rotguss, matt vernickelt
- Ventileinsatz aus Messing, O-Ringe und Weichdichtungen aus EPDM, Spindel aus Edelstahl, Voreinstellring aus Kunststoff
- · Schutzkappe aus Kunststoff, beige
- Überwurfmutter und Tülle aus Messing, vernickelt

### **Anwendung**

Thermostatventile dieses Typs werden in den Vorlauf oder Rücklauf von Heizkörpern oder Wärmetauschern eingebaut. Zusammen mit einem Thermostaten z.B. Thera-4 wird die Raumtemperatur durch Regelung des Heißwasserzuflusses in den Heizkörper oder Wärmetauscher reguliert. Die Temperatur verschiedener Räume wird individuell geregelt und somit Energie

Die geräuscharmen Thermostatventile dieses Typs werden in Zweirohrheizungen mit mittleren Wassermengen in den Vorlauf eingebaut.

Die Wassermenge ist durch den stufenlos voreinstellbaren Ventilkegel begrenzt.

Der Ventilkegel kann während des Betriebs ohne Entleerung der Anlage mit Hilfe des Montagegeräts ausgetauscht werden (siehe Zubehör).

Die Thermostatventile dieses Typs eignen sich für

- Honeywell Thermostate mit M30 x 1,5 Anschlussgewinde
- Honeywell Stellantriebe Smart-T und einige Stellantriebe vom Typ M7410
- Honeywell Stellantriebe Hometronic HR80 und Raumtronic HR40

# AT-Konzept

Die jeweiligen Gehäuse der Thermostatventile sind gleich. Die Typen unterscheiden sich nur durch den Ventileinsatz d.h. ieder Ventileinsatz kann durch einen anderen der Reihe BB, KV, UBG, SL, VS, FS, FV and SC ersetzt werden.

### **Besondere Merkmale**

- Stufenlos voreinstellbarer Ventilkegel
- Manipulationssichere Voreinstellung von außen sichtbar, wenn der Thermostatregler demontiert ist
- Für Heizsysteme mit mittlerer Durchflussmenge
- Erhältlich mit zusätzlicher Spülstellung
- Geräuscharm
- Ventilgehäuse nach DIN mit Einbaumaßen nach EN215, Anhang A, Baureihe D
- Ventilgehäuse nach NF mit Einbaumaßen nach EN215, Anhang A, Baureihe F
- AT-Konzept bei Ventilgehäusen und -einsätzen
- Austausch des Ventileinsatzes während des Betriebs ohne Entleerung der Anlage
- Ventilöffnungsfeder ist außerhalb des Wasserwegs
- Thermostatgewindeanschluss M30 x 1,5

#### **Technische Daten**

Medium Heißwasser, Wasserqualität nach

VDI2035

Betriebstemperatur max. 130 °C

Betriebsdruck PN10

Differenzdruck Max. 2 bar -

Max. 0,2 bar für geräuscharmen

Betrieb empfohlen

 k<sub>vs</sub>-Wert
 0,72

 Nenndurchfluss
 130 kg/h

 Thermostatgewinde
 M30 x 1,5

 Schließmaß
 11,5 mm

 Hub
 2,5 mm

### Kennzeichnung

- Beige Schutzkappe, Buchstaben 'V' eingeprägt
- Beige Kunststoff-Skala auf dem Ventileinsatz

### **Funktion**

Heizkörperthermostatventile ermöglichen die individuelle Regelung der Raumtemperatur und sparen somit Energie.

Die Ventile werden vom Fühlerelement des jeweiligen Thermostatreglers gesteuert. Wird der Thermostatregler von warmer Raumluft umströmt, so dehnt sich das Fühlerelement aus. Diese Ausdehnung wirkt auf die Spindel, welche das Ventil schließt. Fällt die Temperatur, zieht sich das Fühlerelement zusammen und die federbelastete Spindel öffnet das Ventil. Heizkörperthermostatventile öffnen proportional zur Temperatur am Fühlerelement d.h. nur die Menge an Wasser, die zum Erhalt der am Thermostatregler eingestellten Raumtemperatur notwendig ist, kann in den Heizkörper fließen.

### **Einbaubeispiel**



Abb. 1. Eck

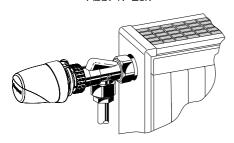



Abb. 3. Axial

### Bitte beachten:

Unnötige Kosten können vermieden werden. Achten Sie bei einer Armaturauswahl auf folgende Anlagenbedingungen:

- Zur Vermeidung von Steinbildung und Korrosion sollte die Zusammensetzung des Heizmediums der VDI-Richtlinie VDI 2035 "Korrosionsschutz in Wasserheizungsanlagen" entsprechen.
- Heizmittelzusätze müssen für EPDM-Dichtungen geeignet sein. Im Medium enthaltene Mineralöle bzw. mineralölhaltige Stoffe jeder Art führen zum Aufquellen und zum wahrscheinlichen Ausfall von EPDM-Dichtungen.
- Die Anlage ist vor Inbetriebnahme zu spülen.
- Beanstandungen, die auf Nichteinhaltung dieser Empfehlungen zurück zu führen sind, müssen bei einem Werkseinsatz in Rechnung gestellt werden.
- Sollten Sie besondere Wünsche oder Anforderungen an unsere Armatur haben, sprechen Sie uns bitte an.

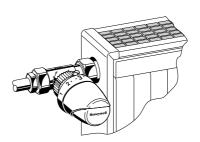



Abb. 2. Durchgang

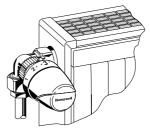
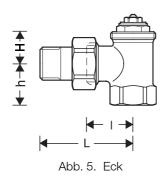
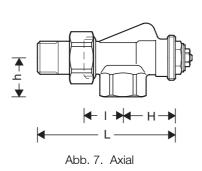
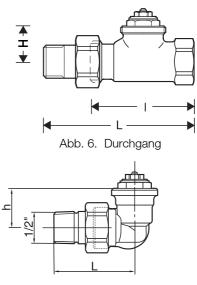






Abb. 4. Winkeleck

# Baumaße und Bestellinformationen







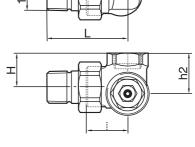



Abb. 8. Winkeleck

Tabelle 1. Baumaße und Bestellinformationen

| Gehäusetyp               | DN | k <sub>vs</sub> -Wert | Rohr-<br>anschluss               | l  | L   | h  | Н  | h2   | ArtNr.     |
|--------------------------|----|-----------------------|----------------------------------|----|-----|----|----|------|------------|
| Für den Vorlauf          |    |                       |                                  |    |     |    |    |      |            |
| Eck nach EN215 (D)       | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 26 | 52  | 22 | 20 | _    | V2000EVS10 |
| (Abb. 5)                 | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 29 | 58  | 26 | 20 | _    | V2000EVS15 |
|                          | 20 | 0,72                  | Rp <sup>3</sup> / <sub>4</sub> " | 34 | 66  | 29 | 19 | _    | V2000EVS20 |
| Durchgang nach EN215 (D) | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 59 | 85  | _  | 25 | _    | V2000DVS10 |
| (Abb. 6)                 | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 66 | 95  | _  | 25 | _    | V2000DVS15 |
|                          | 20 | 0,72                  | Rp <sup>3</sup> / <sub>4</sub> " | 74 | 106 | _  | 25 | _    | V2000DVS20 |
| Eck nach EN215 (F)       | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 24 | 49  | 20 | 21 | _    | V2020EVS10 |
| (Abb. 5)                 | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 26 | 53  | 23 | 22 | _    | V2020EVS15 |
|                          | 20 | 0,72                  | Rp <sup>3</sup> / <sub>4</sub> " | 34 | 66  | 29 | 18 | _    | V2020EVS20 |
| Durchgang EN215 (F)      | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 50 | 75  | _  | 26 | _    | V2020DVS10 |
| (Abb. 6)                 | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 55 | 82  | _  | 26 | _    | V2020DVS15 |
|                          | 20 | 0,72                  | Rp <sup>3</sup> / <sub>4</sub> " | 74 | 106 | _  | 24 | _    | V2020DVS20 |
| Axial                    | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 24 | 50  | 22 | 33 | _    | V2000AVS10 |
| (Abb. 7)                 | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 26 | 54  | 26 | 35 | _    | V2000AVS15 |
| Winkeleck, Heizkörperan- | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 24 | 53  | 26 | 22 | 26,5 | V2000LVS10 |
| schluss links            | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 24 | 53  | 26 | 26 | 30,5 | V2000LVS15 |
| (Abb. 8)                 |    |                       |                                  |    |     |    |    |      |            |
| Winkeleck, Heizkörperan- | 10 | 0,72                  | Rp <sup>3</sup> / <sub>8</sub> " | 24 | 53  | 26 | 22 | 26,5 | V2000RVS10 |
| schluss rechts           | 15 | 0,72                  | Rp <sup>1</sup> / <sub>2</sub> " | 24 | 53  | 26 | 26 | 30,5 | V2000RVS15 |
| (Abb. 8)                 |    |                       |                                  |    |     |    |    |      |            |

Hinweis: Alle Maße in mm, falls nicht anders angegeben.

### Zubehör

### Rohranschlüsse

### 1 Klemmring, 1 Druckschraube (vernickelt)



| VA620A1010 |
|------------|
| VA620A1012 |
| VA620A1510 |
| VA620A1512 |
| VA620A1514 |
| VA620A1515 |
| VA620A1516 |
| VA620A2018 |
| VA620A2022 |
|            |

Hinweis: Für weiches Stahl- und Kupferrohr (Rohrwandstärke 1 mm) sind Stützhülsen zu verwenden

# 2 Klemmringe, 2 Druckschrauben, 2 Stützhülsen (vernikkelt)



| 3/8" x 12 mm | VA621A1012 |
|--------------|------------|
| 1/2" x 12 mm | VA621A1512 |
| 1/2" x 15 mm | VA621A1515 |
| 1/2" x 16 mm | VA621A1516 |
| 3/4" x 18 mm | VA621A2018 |

# 2 Klemmringe, 2 Druckschrauben, 2 Stützhülsen für Verbundrohr (vernickelt)

| (C) (C) (C) | 1/2" x 14 mm | VA622B1514 |
|-------------|--------------|------------|
|             | 1/2" x 16 mm | VA622B1516 |

### Reduzierstück



| 1" Rohr auf 1/2" Ventil     | VA6290A260 |
|-----------------------------|------------|
| 1 1/4" Rohr auf 1/2" Ventil | VA6290A280 |
| 1" Rohr auf 3/4" Ventil     | VA6290A285 |
| 1 1/4" Rohr auf 3/4" Ventil | VA6290A305 |

# Tülle, normale Länge, mit Gewinde bis zum Bund

| für Ventile DN 10 (3/8") |  |
|--------------------------|--|
| für Ventile DN 15 (1/2") |  |
| für Ventile DN 20 (3/4") |  |

### Verlängerungstülle vernickelt, beliebig zu kürzen



| 3/8" x 70 mm (für DN 10)                      | VA5204A010 |
|-----------------------------------------------|------------|
| ca. 50 mm Gewinde                             |            |
| 1/2" x 76 mm (für DN 15)<br>ca. 65 mm Gewinde | VA5204A015 |
| 3/4" x 70 mm (für DN 20)                      | VA5204A020 |

### Löttülle



| 3/8" x 12 mm (für DN 10) | VA5230A010 |
|--------------------------|------------|
| 1/2" x 15 mm (für DN 15) | VA5230A015 |
| 3/4" x 22 mm (für DN 20) | VA5230A020 |

### Ventilzubehör

### Handreguliervorrichtung



| Voreinstellbar, mit integrierter | VA2200D001 |
|----------------------------------|------------|
| Blockiereinrichtung              |            |

### Baustellenschutzkappe



| für Ventil DN 10 | VA2202A010 |
|------------------|------------|
| für Ventil DN 15 | VA2202A015 |
| für Ventil DN 20 | VA2202A020 |

### **Dichtung**



| für Ventil DN 10 | VA5090A010 |
|------------------|------------|
| für Ventil DN 15 | VA5090A015 |
| für Ventil DN 20 | VA5090A020 |

### Montagegerät



# Feinstvoreinstellschlüssel

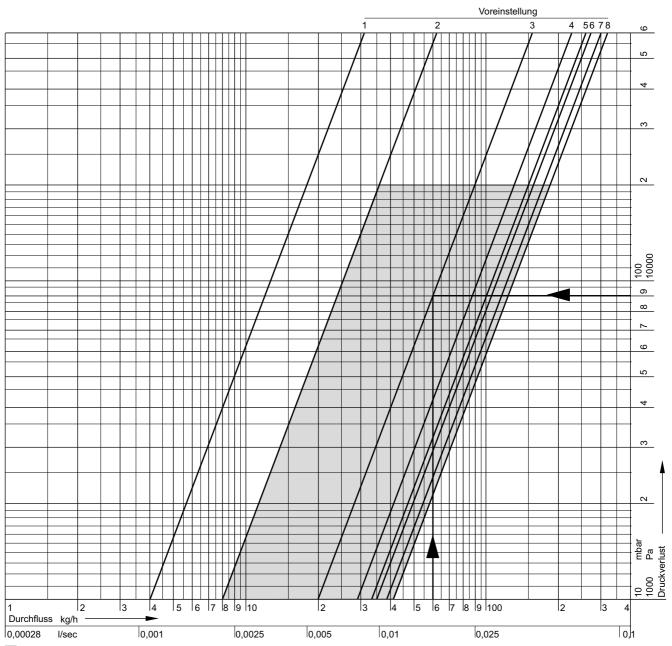


| für FS und VS | VA8201FV03 |
|---------------|------------|
|               |            |

### **Einfach-Werkzeug**



| für FV-, FS-, V- und VS- | VA8201FV02 |
|--------------------------|------------|
| Ventile                  |            |


### Austausch-Oberteil



VA5201A010 VA5201A015 VA5201A020

| Typ V/VS    | VS1200VS01  |
|-------------|-------------|
| 1 9 0 7 0 0 | VO1200 VO01 |

# Durchflussdiagramm



empfohlener Einsatzbereich

| Voreinstellung                            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-------------------------------------------|------|------|------|------|------|------|------|------|
| $xP = 1K (m^3/h)$                         | 0,04 | 0,06 | 0,13 | 0,16 | 0,19 | 0,19 | 0,19 | 0,19 |
| $xP = 2K (m^3/h)$                         | 0,04 | 0,08 | 0,20 | 0,29 | 0,33 | 0,35 | 0,38 | 0,41 |
| k <sub>vs</sub> -Wert (m <sup>3</sup> /h) | 0,04 | 0,09 | 0,22 | 0,35 | 0,43 | 0,51 | 0,62 | 0,72 |

Hinweis: Voreinstellung 8 = Spülstellung, werksseitig eingestellt

### **Auslegungsbeispiel**

gegeben: Durchfluss 60 kg/h

gesucht: Voreinstellung bei einem gewünschten Druckverlust  $\Delta p = 90$  mbar = 9 000 Pa mit P-Band 2K Lösung: Der gesuchte Druckverlust ergibt sich als Schnittpunkt der Durchflusslinie mit der gewählten

Ventilkennlinie bei P = 2K

Ergebnis: Voreinstellung 3